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High-resolution numerical simulations (with up to 2515~ modes) are performed for 
three-dimensional flow driven by the large-scale constant force f y  = F cos(x) in a 
periodic box of size L = 2n (Kolmogorov flow). High Reynolds number is attained 
by solving the Navier-Stokes equations with hyperviscosity (-l)h+lk’ ( h  = 8). It is 
shown that the mean velocity profile of Kolmogorov flow is nearly independent of 
Reynolds number and has the ‘laminar’ form Y, = Vcos(x) with a nearly constant 
eddy viscosity. Nevertheless, the flow is highly turbulent and intermittent even at 
large scales. The turbulent intensities, energy dissipation rate and various terms in 
the energy balance equation have the simple coordinate dependence a + b cos(2x) 
(with a,b constants). This makes Kolmogorov flow a good model to explore the 
applicability of turbulence transport approximations in open time-dependent flows. 
It turns out that the standard expression for egective (eddy) viscosity used in K-8  
transport models overpredicts the effective viscosity in regions of high shear rate and 
should be modified to account for the non-equilibrium character of the flow. Also at 
large scales the flow is anisotropic but for large Reynolds number the flow is isotropic 
at small scales. The important problem of local isotropy is systematically studied by 
measuring longitudinal and transverse components of the energy spectra and cross- 
correlation spectra of velocities and velocity-pressure-gradient spectra. Cross-spectra 
which should vanish in the case of isotropic turbulence decay only algebraically but 
somewhat faster than corresponding isotropic correlations. It is verified that the 
pressure plays a crucial role in making the flow locally isotropic. It is demonstrated 
that anisotropic large-scale flow may be considered locally isotropic at scales which 
are approximately ten times smaller than the scale of the flow. 

1. Introduction 
Naturally occurring open turbulent flows including jets and mixing layers are 

typically anisotropic and time dependent. Quite frequently they exhibit intermittent 
behaviour even at large scales. In this work we explore properties of open flows 
focusing on Kolmogorov flow, namely flow in a periodic box driven by a large-scale 
steady force K cos(x). By use of hyperviscous dissipation instead of Newtonian 
dissipation, the Reynolds number of the flow is effectively increased. At these 
high effective Reynolds numbers, Kolmogorov flow exhibits strong large-scale time 
dependence (intermittency). We find that for this flow, the effective (eddy) viscosity 
should be modified to account for the large-scale time dependence. We also address 
the question of verifying the local-isotropy hypothesis, which states that large-scale 
anisotropic flow becomes isotropic at small scales provided that the Reynolds number 
is sufficiently large. 



294 K Borue and S .  A. Orszag 

More than 50 years ago, Kolmogorov (1941) proposed that three-dimensional 
homogeneous turbulence should have a universal, but singular, limit as viscosity 
tends to zero. In this zero-viscosity limit the total amount of energy dissipation 
has a finite non-zero limit. The mechanism of this ‘dissipation without viscosity’ is 
purely dynamical. It manifests itself through the energy flux from larger scales at 
which energy is input to smaller scales where it is dissipated. At intermediate spatial 
scales in the so-called inertial range, three-dimensional turbulence exhibits constant 
energy flux. The singularity of the zero-viscosity limit reveals itself in the fact 
that although viscosity is an irrelevant parameter in the inertial range, it eventually 
provides dissipation at the smallest scales of the system. In other words, viscosity 
provides the ultraviolet cutoff at a dissipation wavenumber kd. In the inertial range, 
the fluid is effectively described by the inviscid equations while the direction of the 
energy flux imposes irreversibility on the flow. It is thus natural to suppose that the 
detailed way that energy is extracted from the system may not influence the properties 
of the inertial range. 

In previous work (Borue & Orszag 1995a), we have already demonstrated that 
for given numerical resolution, we can effectively increase the extent of the inertial 
range of three-dimensional turbulence by an order of magnitude by using alternative 
forms of dissipation. With normal Newtonian viscosity it is necessary to have nearly 
two decades of wavenumbers in the dissipation range. This range of spatial modes 
is then not part of the inertial range. We propose replacing the normal Newto- 
nian dissipation by a higher power of the Laplacian, i.e. a hyperviscosity. In this 
case, the dissipation range can be quite short and the remaining degrees of freedom 
can thcn participate in the inertial-range dynamics. Hyperviscosity is now a stan- 
dard tool for numerical simulations of two-dimensional turbulence. The literature 
on the subject is extensive and too numerous to review here (see e.g. Borue 1993 
and references therein). For three-dimensional turbulence, hyperviscosity was used 
by Herring & Metais (1989) for simulations of stratified turbulence (hyperviscosity 
was used concurrently with Newtonian viscosity to stabilize the calculations) and 
by Bartello, Metais & Lesieur (1994) for simulations of rotating turbulence. Also, 
the piecewise parabolic numerical scheme used for simulations of compressible turbu- 
lence by Porter, Pouquet & Woodward (1992) effectively involves fourth-order ( h  = 2) 
h yperviscosity. 

It was shown by Borue & Orszag (19954 that three-dimensional inertial-range 
dynamics is relatively independent of the form of the hyperviscosity and that modest 
resolution simulations with high-order hyperviscosity lead to sufficiently extensive 
inertial ranges that measurement of a broad variety of otherwise intractable quantities 
can be made. Similar conclusions may be drawn from the work by Bartello et al. 
(1994). On the other hand (Borue & Orszag 1995a) for the case of homogeneous 
isotropic white-in-time forced turbulence we observed deviations of the isotropic 
energy spectrum from the 5/3 Kolmogorov law (Kolmogorov 1941). It was suggested 
that this deviation is likely to be related to the large-scale behaviour of the system, in 
particular to the mechanism of energy pumping. Indeed, later (Borue & Orszag 19956) 
we have shown that, for decaying turbulence in a periodic box, the 5/3 Kolmogorov 
law is recovered and self-similar decay is observed. 

Here we concentrate on the case of large-scale anisotropic flow. In unpublished 
work from the 1950s, Kolmogorov proposed to study flow in a periodic box with 
large-scale forcing f y  = cos(kfx) as a model to understand the transition to turbulence. 
This flow is now referred to as Kolmogorov flow (Meshalkin & Sinai 1961). It was 
shown by Meshalkin & Sinai (1961) that this flow is unstable to large-spatial-scale 
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perturbations. Most of the literature on Kolmogorov flow concentrates on the case 
of two-dimensional flow (see e.g. E & Shu 1993 and references therein). In three- 
dimensions, Kolmogorov flow was studied only for a small-scale force in connection 
with the possibility of anisotropic inverse cascade and large-scale symmetry break- 
ing (Sulem et al. 1989). Here we consider high Reynolds number three-dimensional 
Kolmogorov flow generated by the force f y  = cos(x) in a periodic box of size 
L = 2x. The force acts on the largest possible scale of the system. In two dimensions 
this flow is unconditionally stable, but it does become turbulent in three dimen- 
sions. The use of hyperviscosity enables very high Reynolds number simulations. 
When highly turbulent, the mean flow and turbulent intensities of Kolmogorov flow 
have an unusually simple structure. As an open flow, Kolmogorov flow is then an 
interesting testing ground for turbulence transport models and large-eddy simula- 
tions. However, such tests are left for the future. In this paper we concentrate 
on the study of various mean flow characteristics, including the turbulent energy 
budget. Also we address the question of local isotropy of large-scale anisotropic 
flow. 

The local isotropy hypothesis states that, at sufficiently high Reynolds numbers, 
small-scale structures of turbulent motions are independent of large-scale anisotropy 
(see Kolmogorov 1941, 1962 and also Monin & Yaglom 1975). This hypothesis 
plays a key role in nearly all theories, models, and large-eddy simulations of tur- 
bulencc. If this hypothesis breaks down there is very little hope of obtaining a 
universal theory of turbulence since the small-scale flow will then always be de- 
pendent on the details of the anisotropic large-scale structures. Since Kolmogorov 
proposed his theory, there have been many experiments conducted in different sys- 
tems to yerify the local-isotropy hypothesis. Excellent reviews of this work already 
exist (see Van Atta 1991 and Sreenivasan 1991 and references therein). However, 
up to now there has been no consensus on whether the local-isotropy hypothe- 
sis is valid. An important contribution to this problem was recently made by 
Saddoughi & Veeravalli (1994). These authors not only demonstrated how lo- 
cal isotropy is established in anisotropic shear flow when the Reynolds number 
increases, but they also found scaling laws for the decay of anisotropic contribu- 
tions. 

There have also been a number of recent theoretical and numerical studies that ad- 
dress the problems of the relative importance of non-local versus local (in wavenum- 
ber space) interactions in the energy cascade process. In some studies, non-local 
interactions in the energy cascade process have been inferred, thereby calling into 
question local self-similar energy cascades and the local-isotropy hypothesis (see 
Brasseur & Wei 1994 for a review). Unfortunately, the Reynolds numbers in these 
numerical simulations using Newtonian viscosity are too low to rcliably verify or 
reject the local-isotropy hypothesis. 

In this paper we systematically study local isotropy as a function of the Reynolds 
number. It is demonstrated that Kolmogorov flow which is highly anisotropic at 
large scales becomes locally isotropic at small scales. As found by Saddoughi 
& Veeravalli (1994) we also find that anisotropic correlations decay in wavenum- 
ber space only algebraically and only slightly faster than isotropic correlations. 
This suggests that although the local-isotropy hypothesis seems to hold, the slow 
decay of anisotropic fluctuations may have an impact even inside the inertial 
range. The importance of large-scale shear and the algebraic character of the 
decay of anisotropic corrections were extensively discussed by Yakhot (1994) and 
Grossman et al. (1994). 
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2. Technical background 
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The hyperviscosity-modified Navier-Stokes equations are 

d , ~ ,  + vjdjvi = -dip + (-l)h+'vhAhui + f i  

where the pressure p is calculated from the incompressibility condition &v, = 0. 
Summation over repeated indices is assumed. On the right-hand side of (2.1) we 
include a force which is non-zero only at some characteristic scale kf  and a hypervis- 
cous dissipation designed to provide an energy sink at small scales. For the case of 
Kolmogorov flow, the only non-zero component of the force is f ,  = Fcos(kfx) with 
k f  = 1. The power h of the hyperviscous dissipation is chosen to maximize the extent 
of the inertial range. In general larger h yields a larger inertial range, but there are 
practical considerations that limit h. We solve (2.1) using a parallel pseudospectral 
code described by Jackson, She & Orszag (1991). To justify the use of the spectral 
numerical scheme, exponential decay of spectra must start no latter than wavenumber 
N / 3 ,  the dealiasing threshold for spatial resolution N 3 .  These requirements lead us 
to chose the power of hyperviscosity h = 8, which is assumed throughout the paper. 
For h = 8, the hyperviscous dissipation is nearly zero at wavenumbers k d N / 3  and 
abruptly turns on at k 2 kd = N / 3 .  The hyperviscosity coefficient v h  with h = 8 is 
chosen so that ~ , ( N / 2 ) ~ ~ 6 t  w 0.5, where 6 t  is the time step of the numerical scheme. 
The time step on the other hand is fixed by the characteristic maximum velocity at 
large scales u,, according to the Courant number criterion: um,,6tN/27t 6 0.2. Thus 
all parameters of equation (2.1) are uniquely defined by the large-scale flow and the 
numerical resolution. 

In a statistically steady state, there must be a constant energy flux 

J E ( k )  = T(k')dk' 
k'>k 

for kf < k < kd. Here T(k) is the energy transfer function. On the basis of 
Kolmogorov's (1941) scaling theory for the inertial range, we expect that the isotropic 
energy spectrum E ( k )  has the form 

22!3 

E ( k )  = 4zk2 (ui(-k)Ui(k)) = F G ( k / k d , k d / k f )  (2.3) 

with possible anomalous dimensions (deviations of the scaling laws from Kolmogorov 
scaling) included in the function G. Here 8 is the mean energy dissipation rate set 
by the external forcing. In the case of anisotropy we expect anisotropic spectra at 
least at low wavenumbers. In the Kolmogorov (1941) theory at low wavenumbers G 
approaches a universal constant CK now called the Kolmogorov constant. We define 
the energy dissipation rate in the case of hyperviscosity as 

& = vhAh/2viAh/2vi. (2.4) 

&, = 2VSijSij. (2.5) 

For Newtonian viscosity the energy dissipation rate is defined as 

The rate of strain Sij  and vorticity coj are defined as 
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It is interesting to determine the Reynolds number when hyperviscosity is used. 
The Taylor microscale Reynolds number for Newtonian viscosity is defined as 

based on the Taylor microscale 

A=(-). 

Here u,,, and w,,, are root-mean-square velocity 

(2.8) 

and vorticity. It is convenient to 
rewrite (2.7) and (2.8) using the dissipation cutoff k d .  We define the dissipation cutoff k d  

as the wavenumber at which the maximum of the vorticity spectrum k2E(k)  is attained. 
In the case of Newtonian viscosity k d  - ( $ / v ~ ) ' / ~ .  Estimating urmS - 21/3/ki'3 and 

wrms - 81/3ki'3, from (2.8) and (2.7) we obtain 1" - l / ( k  kd ) and RA - (kd/kf)2/3. 

as 

1/3 2/3 

We suggest that the Taylor microscale Reynolds number r' or hyperviscosity be defined 

where Ch may be different for different powers of hyperviscosity. We also suggest 
fixing ch by comparing the ranges of constant energy flux, which scale nearly linearly 
with kd.  As was shown by Borue & Orszag (1995a), C1 3 25 and CR 3 50. These are 
rather crude estimates. Nevertheless the definition (2.9) is convenient for comparing 
diflerent runs with the same power of hyperviscosity. We expect that our largest 2563 
resolution run with h = 8 should approximately correspond to RA w 1000, kd 3 80 
(here and later we assume that wavenumbers are measured in 2x/L = 1 units). 

Kolmogorov flow is inhomogeneous and anisotropic, with translational invariance 
broken in the x-direction. Translational invariance is still valid in the y- and z -  
directions. Even without translational invariance in the x-direction we may still use 
spectra measured in this direction, but we should remember that these spectra have 
the form P(x)S(k , ) .  Here P(x) is a slowly varying prefactor reflecting the loss of 
translational symmetry and S ( k , )  is the spectrum itself. This decomposition is accurate 
only if prefactors vary slowly in comparison with S(k,). In our case, prefactors have 
the characteristic scale of forcing kf. Thus the decomposition becomes sufficiently 
accurate for k, > k f .  In what follows we will assume such a decomposition for 
spectra in the x-direction. Assuming that our system is approximately homogeneous 
in the x-direction we may introduce nine one-dimensional energy spectra. The energy 
spectrum of the i-component of velocity measured in the a-direction takes the form 

= (v,(-k)u,(k)) dk/. (2.10) 
t f Y  

There is no summation over i and s( in (2.10). Throughout the paper we use the 
notation i = x,y,z (lower index) for the i-component of velocity and a = X, Y , Z  
(upper index) for the direction in which the one-dimensional energy spectrum is 
measured. When i = a these spectra are called longitudinal spectra ELL(k), otherwise 
for i # CI they are called transverse spectra EN&) (Monin & Yaglom 1975). For 
isotropic flow, all longitudinal spectra should coincide. The same is true for all the 
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transverse spectra. For solenoidal vectors, it is possible to calculate the transverse 
spectrum from the longitudinal one (Monin & Yaglom 1975) as 

V. Borue and S. A. Orszag 

(2.11) 

Also, the isotropic energy spectrum may be calculated from the longitudinal and 
transverse energy spectra according to 

(2.12) 

We will use (2.11) and (2.12) to check the local isotropy of our system. 

A and B measured in the direction a (a  = X, Y ,  Z j as 
It is also convenient to define the one-dimensional spectrum of any two operators 

%??“[A, B](k,) = / (A(-k)B(k)  + A(k)B(-k)) dke. (2.13) 

The only non-zero Reynolds stress for the Kolmogorov flow is (u,q,). To characterize 
anisotropy we also introduce the correlation-coefficient spectrum between the x- and 
y-velocity components which can be measured in the Y-  or Z-directions. For the 
direction a = Y , Z  it has the form 

l # a  

(2.14) 

For local isotropy to hold this spectrum should fall to zero at high wavenumbers. 

3. Kolmogorov flow 

the force and the Reynolds number. The force has the form 
The Kolmogorov flow is characterized by the amplitude of the force, the scale of 

f ,  = Fcos(kfx); kf = 1; F = 0.16. (3.11 
The amplitude of the force F defines the time scale of the problem and may be chosen 
arbitrarily. The Reynolds number is defined by the available numerical resolution. 
The characteristic velocity and time scale in the case of Kolmogorov flow are 

We choose the prefactors in (3.2) arbitrarily. In our numerical simulations we used 
F = 0.16 and kf = 1, which correspond to V0 = 1 and TO = 1. To obtain results 
that are independent of the amplitude of the force we need to rescale all relevant 
quantities appropriately. In fact we assume that we are using the units (3.2) so that 
all our results are automatically rescaled. 

We report here a series of runs for Kolmogorov flow with different numerical 
resolutions (Reynolds numbers) using hyperviscous dissipation and a few runs with 
Newtonian dissipation. Our numerical resolutions are 643, 1283 and 2563. The 
characteristic velocity for F = 0.16 is urms w 0.5 and the characteristic large-eddy 
turnover time z, = l / z ~ ~ ~ , ~  = 2. We integrate for more than 1000 large-eddy turnover 
times for 643 resolution, 500 large-eddy turnover times for resolution 1283 and around 
10 large-eddy turnover times for resolution 2563. Low Reynolds number simulations 
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FIGURE 1. (a) Mean velocity profiles; (b)  average Reynolds stresses. The data are plotted for 
the hyperviscosity ( h  = 8) runs with resolutions 1283 and 643. The thick lines correspond to the 
interpolation formulas (3.5) and (3.6). 

with 643 and 12g3 resolution with Newtonian viscosity has also been performed for 
up to 500 large-eddy turnover times. Mostly we will consider the h = 8 hyperviscous 
simulations with 643 and 12g3 resolution, because the averaging time in these cases 
is long enough to obtain statistically convergent results even for sensitive quantities. 
For the 2563 case the time of integration is sufficient to obtain spectral characteristics 
of the flow, but it is still too small to obtain reliable turbulence intensities. When 
h = 8, the dissipation scale k d ,  defined as the maximum of the enstrophy spectrum, is 
k d  = 21,41,82 for 643, 12g3, 2563 resolution, respectively. 

3.1. Mean velocity and turbulence intensities 
In laminar Kolmogorov flow (with Newtonian viscosity) the velocity has the form 

At high Reynolds number the flow becomes turbulent and a fluctuating Reynolds 
stress ( ( u x u y } )  is generated; here (...) indicates an appropriate average, which in the 
case of Kolmogorov flow is a combined space-time average over t ,y,z .  In the usual 
way an effective or eddy viscosity is introduced through the relation 

(3.4) 

The numerical results for the mean velocity and Reynolds stress plotted in figure 1 
show that for high Reynolds number Kolmogorov flow the mean velocity has the 
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FIGURE 2. Turbulence intensities: (a) vy; (b)  o;,~'; ( c )  v?. The data are plotted for the hyperviscosity 
(h  = 8) runs with resolutions 1283 and M3. The thick lines correspond to the interpolation formulas 
(3.9). 

nearly laminar profile ( k j  = 1 is assumed) 

(0') = (1.1 & O . O ~ ) V ~ C O S ( X )  (3.5) 

and the Reynolds stress is given approximately by 

(ZI,~~) = 0.16Vt sin(x). 

Here Vo is given by (3.2) and the result (3.6) follows from the space-time averaged 
Navier-Stokes equation 

-- ('xu') - F cos(x). 
dx (3.7) 

We conclude from (3.4)--(3.6) that the effective viscosity is nearly constant: 

We emphasize that long averaging times are required to obtain statistically reliable 
mean velocity and Reynolds stress results. 

In figure 2 we plot the (x, y, 2)-components of the turbulent r.m.s. velocity fluctua- 
tions. These r.m.s. velocities are well approximated by 

uLmS = 0.55( 1 - 0.055 COS(~X))V~,  ) 
0 5 , ~ ~  = 0.6( 1 - 0.1 C O S ( ~ X ) ) V ~ ,  

~i~~ = 0.5(1 - 0.1 COS(~X))V~.  

(3.9) 
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FIGURE 3. Averaged (a)  total turbulent kinetic energy; ( b )  energy dissipation rate; (c) effective 
viscosities. The thick lines correspond to the interpolation formulas (3.10), (3.11) and (3.8). The 
data are plotted for the hyperviscosity ( h  = 8) runs with resolutions 12S3 and 643. 

The total turbulent energy, plotted in figure 3(a), is well approximated by 

K = 0.46(1 - 0.15 COS(~X))V$ (3.10) 

while the averaged energy dissipation rate 8, defined by (2.4) and plotted in figure 3(b)  
has the form 

8 = 0.093(1 - 0.12~0~(2~))V,3kf.  (3.11) 

The scatter observed in figure 3(a, b )  is likely due to strong fluctuations at large scales 
that are not sufficiently averaged in the limited time of our simulations. 

The effective viscosity calculated by (3.4) is plotted in figure 3(c) for the hyperviscous 
runs with resolution 1283 and 643. It  is clear that the effective viscosity is nearly 
constant and given by (3.8). 

Kolmogorov flow is well suited as a test-bed for various approximate models that 
are used for empirical description of turbulent flows. One of the basic assumptions 
of these transport models is that the turbulent eddy viscosity is given by (see for 
example Yakhot et al. 1992) 

K2 
Yeff = c,-, 

d 
(3.12) 

In the RNG turbulence theory, C, = 0.085 (Yakhot & Orszag 1986). However it must 
be emphasized that the formula (3.12) is only justifiable for equilibrium turbulence in 
which the characteristic space and time scales over which mean quantities vary are 
large compared to the scales of energetic turbulent eddies. In non-equilibrium flows 
deviations are expected. 
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FIGURE 4. (a) 0.085K2/b, (b)  Ct = v , j f & / K 2 ,  ( c )  i? as functions of x. The data are plotted for the 
hyperviscosity ( h  = 8) runs wth  resolutions 128' and 643. 

As was suggested by Smith & Yakhot (1993), using an extension of RNG theory, 
the effective viscosity for non-equilibrium flows has the same form (3.12) but C, 
depends on the dimensionless shear 

according to 

(3.13) 

(3.14) 

Here ctl is some constant of order one. 
In figure 4(a) we plot the effective viscosity calculated a posteriori by equation 

(3.12). We see that (3.12) leads to a space-varying effective viscosity inconsistent with 
the experimentally observed constant effective viscosity (3.8). Using equations (3.8) 
and (3.12) C,, = veffB/K2 depends on x. The functions C,(x) and q(x) are plotted in 
figures 4(b) and 4(c), respectively. For our Kolmogorov flow C,, varies from 0.085, 
for q = 0, down to 0.05, when y is maximal. 

In figure 5 ( a )  we plot the measured C, coefficient as a function of q. Although 
we performed quite long statistical averaging some asymmetry of the curve still may 
be observed, indicating that these data are sensitive to the total averaging time. The 
results plotted in figure 5(a) may be fitted by the simple linear approximation 

C, 0.085(1 - 0.0651q/). (3.15) 

For comparison, CJq) as predicted by (3.14) with cI = 5 is plotted in figure 5(b). In 
the range of q observed in Kolmogorov flow (lqlfizax 3 5.5) (3.14) is not inconsistent 
with our data. The largest errors come from the low-shear regions where our 
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FIGURE 5 .  ( a )  C, = v e f f b / K 2  as a function of Q; (h)RNG theoretical prediction (3.14). The data 
are plotted for the hyperviscosity ( h  = 8) runs with resolutions l B 3  and 643. 

data have the largest experimental uncertainty. Similar decrease of C,  with Iyi was 
observed in numerical simulations by Cazalbou & Bradshaw (1993) in the wall region 
of channel flow where y is high and in experiments on different types of shear flow 
by K. Sreenivasan (1995, personal communication). 

3.2. Large-scale intermittency of Kolrnogorov pow 

In Kolmogorov flow velocity fluctuations are nearly of the same order of magnitude 
as the mean velocity itself. This high level of turbulence is rarely observed in wall- 
bounded flows, but is common in open flows. Kolmogorov flow demonstrates highly 
intermittent behaviour in time even at large scales. In our simulations we recorded 
the total energy and enstrophy of the flow as a function of time. We also recorded 
the mean energy as a function of time. The mean energy of the flow at a given 
moment of time is defined as the encrgy of the mode k ,  = 1 averaged over the y- and 
z-directions. The turbulent energy of the flow is defined as the difference between 
the total energy and the mean energy of the flow. In this section we analyse these 
signals for a hyperviscous run with resolution 643. For runs with other resolutions 
these quantities behavc similarly. The total, mean and turbulent energies and total 
enstrophy for this run are plotted in figure 6(a-d). 

For these signals probability distribution functions are not very far from Gaus- 
sian although substantial skewness y1 = p3/cr3 and excess flatness y2 = p 4 / 0 4  - 3 
can be observed. Here p n  is the nth order central moment and o is the vari- 
ance. The largest skewness and excess flatness are for the turbulent energy sig- 
nal: 71 cs 0.8 and y2 = 1.2. For the mean energy signal, deviations from Gaus- 
sian statistics are smaller: y1 = 0.6 and y2 FZ 0.2. For the total energy signal, 
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y1 = 0.25 and y2 = -0.14, substantially smaller than for each of the components. 
Thus the mean and turbulent energy signals should be strongly correlated. The 
statistics of the total enstrophy signal is also close to Gaussian: y1 = 0.34 and 
y 2  rn 0.1. 

To characterize cross-correlations of these signals we calculate their power spec- 
tral densities and cross-spectral densities. The power spectral density of a signal 
[ ( t )  is defined as P([lw) = (l[*(o)[(o)l) and the cross-spectrum density of this 
signal with another signal [ ( t )  is defined as C([ ,&o)  = ( [ (w ) [ * (w) )  (with en- 
semble averages assumed). The coherence function of these signals is defined as 
lC([, ~~OI)~~/(F'(~~~D)P([ la)). The phase correlations between variables are charac- 
terized by the phase #J of the cross-spectrum C ( [ , [ l w ) .  We use standard Gaussian 
windows to perform Fourier transforms. 

In figure 7(a, h )  we plot the coherence function and the phase correlation function 
of the mean energy and turbulent energy signals. At high frequencies, there is strong 
coherence between these quantities with a phase correlation 4 of approximately --x. 
Thus, at high frequencies. whenever the mean energy is large, the turbulent energy 
is small and vice versa. The coherence and phase correlation functions of the total 
energy and the total enstrophy signals are plotted in figure 7(c,d).  These two signals 
are also strongly cohcrent with a characteristic phase shift of approximately --71/2. 
The total enstrophy signal is strongly correlated with the time derivative of the total 
energy signal (as is expected from the proportionality of energy dissipation rate and 
the total enstrophy, even for hyperviscosity). 
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F I ~ ~ U R E  7. (a)  Coherence function between the mean energy and turbulence energy signals. ( b )  Phase 
correlation function between the mean energy and turbulence energy signals. (c) Coherence function 
between the total energy and total enstrophy signals. ( d )  Phasc correlation function between the 
total energy and total enstrophy signals. (e )  Power spectra of signals in figure 6 as functions of 
frequency on a loglo - log,, scale. Power spectra are labelled in accordance with the labels (a-d) in 
figure 6. 

Power spectra of the signals in figure 6 are plotted in figure 7(e). We may see 
that the power spectra of the mean and turbulent energies nearly coincide and scale 
approximately as 1/02. The power spectrum of the total enstrophy also scales roughly 
as 1/co2. In contrast, the power spectrum of thc total energy is substantially steeper - l /w3.  The 1/co2 behaviour of power spectra reflects sharp (like &function) jumps 
in signals. During these jumps the energy may change by a factor of 2-3 over a 
large-eddy turnover time. The extent of the low-wavenumber flat part of the spectra 
characterizes the autocorrelation time of the system, which is approximately 30. 
Thus after roughly 15 large-eddy turnover times the flow reaches a new statistically 
independent state. 

A simple qualitative picture of Kolmogorov flow emerges from this correlation 
analysis. At some times, Kolmogorov flow has a relatively low level of turbulence 
with strong, increasing mean flow. At this stage the energy provided by the force 
accumulates in the mean flow. Then, at a certain level of the mean shear, the 
flow abruptly becomes unstable producing high-intensity turbulence. During these 
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‘bursting’ events a significant portion of the mean flow energy is transferred to the 
turbulent energy on the time scale of several large-eddy turnover times. After such 
a ‘burst’ the turbulent energy decays due to viscosity and the mean energy of the 
flow starts increasing again. The ‘bursting’ events are stochastic and intermittent in 
time. It is natural that this ‘bursting’ phenomenon is called large-scale intermittency 
of the flow. Similar behaviour is characteristic of open flows. It was argued by 
Nicolaenko & She (1993) that such bursting phenomena in Kolmogorov flow are 
linked to the symmetry breaking of low-dimensional homoclinic cycles present in this 
flow. 

3.3. Transitional and low) Reynolds number Kolnzogorov flow 

Transitional and low Reynolds number Kolmogorov flows must be simulated using 
Newtonian viscosity and not hyperviscosity. In this case, it is useful to define the 
Reynolds number as 

F’/2 
Re = - 

kp’ Y 

We find that transition to turbulence occurs at 

(3.16) 

Recrit = 12-13 (3.17) 

corresponding to v = 0.032 for F = 0.16 and k f  = 1. Once the flow becomes 
turbulent the effective viscosity jumps to the value veff. = 0.14 (see (3.8))’ so there 
is an effective increase of friction coefficient at transition by about factor of 4. 
The details of the three-dimensional transition process for Kolmogorov flow may 
shed considerable light on transition in more complex flows. We performed a 
number of simulations of turbulent low Reynolds number Kolmogorov flows with 
Newtonian viscosity (up to Reynolds number Re = 30). In this range of Reynolds 
numbers the mean velocity profile and turbulence intensities still depend on the 
Reynolds number. Much larger numerical resolutions are required to reach the high 
Reynolds numbers that are accessible with the help of hyperviscosity at modest 
resolutions. 

3.4. Energy budget for Kolmogorov j low 

An important question in transport modelling of turbulence is the relative Val- 
ues of different terms in the energy balance equations. Assumptions are usually 
made about the relative importance of different terms in two-equation K - 6  trans- 
port models (Yakhot et al. 1992), and many of the terms in the energy budget are 
directly modelled in Reynolds stress models (Mansour, Kim & Moin 1988). The 
energy budget will also be important for the discussion of the local-isotropy hypoth- 
esis below. The balance equation for the i = x ,y , z  component of velocity has the 
form 

(3.18) 
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Measurements are performed for resolutions 1283 and 64'. 

where D/Dt = a/& + (vk) d / d X &  and 

(3.19) 

Following Mansour et al. (1988)' the terms on the right-hand side of (3.19) arc 
identified as follows: P,J is the production rate, b,, is the dissipation rate, T,, is 
the turbulent transport rate, IT,, is the velocity-pressure-gradient term and D,, is the 
viscous diffusion rate. The primed velocities indicate their fluctuating parts. The 
explicit form of D,, for hyperviscous dissipation is rather cumbersome. It turns out 
for the case of Kolmogorov flow that this term is smaller than the errors of our 
measurements so it may be neglected. In what follows we will discuss the budgets of 
equations (3.18) only for the case i = j .  

In figures 8 and 9 we plot the terms (3.19) for the balance equation of each 
component of velocity and for the total turbulent kinetic energy. As may be seen, 
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FIGLRE 9. Terms in the budget of (a)  (z(,ttV>; (b) turbulent kinetic energy. = dissipation 
rate (solid line); T j j ,  Tk = turbulent transport (dotted h e ) ;  n,,,nk = velocity pressure-gradient 
(dashed line). Measurements are performed for resolutions 12S3 and 643. 

energy is input to the vv-component of velocity by the force and then redistributed 
by pressure and turbulent transport to other components of velocity. All terms 
(3.19) have the very simple structure a + bcos(2x), where a and b are constants. 
The production of turbulence is inhomogeneous and the amplitude of the I7- and 
T-terms is quite large in comparison with the amplitude of the &-term. The situation 
is similar to that for near-wall turbulence (Mansour et al. 1988) in which the role 
of the velocity pressure-gradient term is very important. It is interesting that, in 
the total energy balance equation, the velocity pressure-gradient term is nearly zero. 
Since pressure plays a major role in the local-in-space redistribution of energy among 
velocity components but not in the total energy balance, total energy is redistributed 
mostly by turbulent diffusion. It is worth noting that if the T, = O.O8cos(2x) term 
in the total energy balance equation is interpreted as turbulent diffusion of K ,  we 
would obtain a nearly constant effective viscosity in the K-equation. It follows 
from (3.10) that the effective viscosity in this case is about 0.29 so that the effective 
turbulent 'Prandtl number' w 0.5 (which is smaller than 0.72 given by RNG theory 
(Yakhot et al. 1992)). 

A comparison of the energy balances at different Reynolds numbers reveals that 
the energy budget is practically independent of Reynolds number. We conclude that 
large-scale eddies are largely responsible for the redistribution of energy. This is 
a strong indication of the likelihood of existence of local-isotropy in Kolmogorov 
flow. In what follows we directly address the local isotropy hypothesis by studying 
correlation functions between the 0,- and t', -components of the velocity and between 
vy and the gradient of pressure d v p ,  both of which should vanish in the isotropic case. 
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FIGURE 10. (a) (S ’ )  /($k”kd4’) and (w ’ )  / (~?k; ’~) ;  (b) ‘effective viscosity’ (8) ki’’/(221’3 (S’)); 

( c )  ((S’ + 0 . 5 0 ~ ~ ) ~ )  / ((S’ +0.5ru’))2: (e) (S4) / (S2); 
(f) (8’) /(8). Measurements are performed for resolutions 12g3: upper curves kd = 42 and 
643; lower curves k d  = 21. 

(d )  ((S’ - O.5rri2)’) / ((S’ + 0 . 5 ~ ~ ) ~ ) :  

In figure 10(a) the averages (S2 = S,,S,,) and ( i ( w 2  = WJO,)) are plotted for nu- 
merical resolutions 643 and 1283. We scale these quantities by 2’/’kii3 in accordance 
with Kolmogorov theory (1941), leading to their near collapse to one curve for dif- 
ferent Reynolds numbers. Here 2 is the energy dissipation rate averaged over the 
flow (including the x-direction). As was shown by Borue & Orszag (1995a), in the 
inertial range the statistical properties of the hyperviscous energy dissipation rate 
(2.4) are equivalent to those with ‘renormalized’ Newtonian effective viscosity (2.5), 
i.e. & = 2ve j jS2 .  To illustrate this idea we use (2.5) and our data to obtain the nearly 
constant ‘renormalized’ effective viscosity plotted in figure 10(b) 

(3.20) 

We also measured the higher-order quantities (S4), (04), (S202) and (8’). In figure 

10 (c) we plot as an example the ratio ((S’ + 0.501’)~) / ((S’ + 0.5~’))’ that is one 
measure of intermittency. This ratio is a slowly growing function of Reynolds number. 
It is known that the pressure satisfies the equation dp = 02/2 - S2. In figure 10(d) 
we plot the ratio ((S’ - 0 . 5 ~ ’ ) ~ )  / ((S2 + O.5w2j2), which is nearly independent of 
Reynolds number and small. This demonstrates the strong negative small-scale 
correlation between S2 and o2 as was noted in Borue & Orsxag (1 995n). If the energy 
dissipation rate were proportional to S2 with nearly constant effective viscosity, we 
would expect that ratios (S4) / (S2>Z and (a2) / (8)’ should behave similarly. This 
is indeed the case as illustrated in figure 10(e,J’). An important conclusion of this 
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FIGURE 11. (a) Scaled isotropic energy spectra E(k)k5/3/t"2'3 and (b)  scaled energy fluxes JE(k) /c"  
as functions of logjoklkd. Resolutions 2563, 1283 and 64' with h = 8. 

analysis is that we have an indication that hyperviscosity leads effectively to constant 
renormalized 'normal' viscosity. 

4. Local-isotropy hypothesis 
Although Kolmogorov flow is anisotropic at large scales we begin our discussion 

with data for isotropic energy spectra (2.3) which are plotted in figure l l(a) as a 
function of log,,k/kd for three different Reynolds numbers. As can be seen, these 
energy spectra collapse to one curve if k / k d  is large enough. There are also noticeable 
deviations from Kolmogorov's 5/3 law similar to those observed by Borue & Orszag 
(1995~). If the 5/3 law is assumed to hold, the Kolmogorov constant would be 
CK fi: 1.5 (this value corresponds to the minimum of compensated energy spectrum in 
the inertial range). It is clear from figure l l ( b )  that the energy flux (see (2.2)) is nearly 
constant across a broad wavenumber range. For 2563 numerical resolution, nearly 
two decades of constant energy flux is observed. We stress that this broad range 
of constant energy flux exists because we use hyperviscous dissipation. Nearly an 
order of magnitude higher numerical resolution in each direction would be required 
to obtain a similarly broad range of constant energy flux with Newtonian viscosity. 

Near the dissipation cutoff kd both isotropic and one-dimensional energy spectra 
have approximately half a decade in which E ( k )  decays roughly as l / k  (see Borue & 
Orszag 199.5~). This flattening of the energy spectra near k d  is termed the 'bottleneck' 
phenomenon (see Falkovich 1994 in which there is also a discussion of early theoretical 
works on this subject). As was shown by Borue & Orszag (19951) the existence of 
the bottleneck is independent of the order h of hyperviscosity, but the range where 
the bottleneck is observed becomes slightly longer when higher order hyperviscosity 
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FIGURE 12. Nine one-dimensional energy spectra scaled by k 5 / 3 / 2 2 / 3  for three different resolutions: 
(a )  64'; (h)  12g3; (c)  256'. 

is used. An increase of the bottleneck range visually corresponds to somewhat higher 
bumps in the compensated energy spectrum (see figure l l u )  for higher-orders of 
hyperviscosity. The l / k  behaviour of the energy spectra near the dissipation cutoff 
was also reported by She & Jackson (1993) based on extrapolation of experimental 
data. A clear case of a bottleneck in energy spectra has been observed recently by 
Saddoughi & Veeravalli (1994) in their high Reynolds number experiments. It was also 
noted by Lohse & Muller-(iroeling (1995) and by Sirovich, Smith & Yakhot (1994) 
that the Fourier transform of Batchelor's interpolation formula for the velocity 
structure function leads to a bottleneck-like energy spectrum. A similar bottleneck 
with I lk  scaling was observed recently in numerical simulations of compressible 
turbulence by Porter et al. (1992). Some indications of the existence of a bottleneck in 
energy spectra was found in numerical simulations of incompressible homogeneous 
turbulence by Vincent & Meneguzzi (1991) and by She et al. (1993). Unfortunately, 
with Newtonian viscosity, this bottleneck region is not fully resolved even using 5123 
resolution. In our recent work (Borue & Orszag 1995a) we have presented some 
evidence that the bottleneck in energy spectra is due to a sharp and rapid change of 
the energy transfer mechanism near the dissipation cutoff, A qualitative explanation 
of the bottleneck in the energy spectrum may be based on the similarity of the energy 
transfer mechanism near kd to that of a passive scalar undergoing large-scale straining 
of small-scale fields which also leads to a k-' spectrum (Batchelor 1959) independent 
of the space dimension (Kraichnan 1974). 

4.1. Local isotropy of one-dimensional energy spectra 
To analyse the local isotropy of Kolmogorov flow we measure all nine one-dimensional 
energy spectra defined by (2.10), which are plotted in figure 12(a-r) for different 
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FIGURE 13. One-dimensional energy spectra scaled by k s / ’ / 8 / 3  as a function of log,,k. The 
hyperviscous run with resolution 2563 is used. The dotted lines are transverse spectra calculated 
from longitudinal ones according to (2.11) and scaled by k5I3/g2I3. ( a )  Ez,E$,E:;  ( b )  Eh,EL,, ,E;; 
(c) E;, E i .  

Reynolds numbers. Obviously for locally 
isotropic flow all three longitudinal and all six transverse spectra should coincide 
with each other. As may be seen. that is not the case. For 643 resolution these 
spectra are different well into the dissipation range. However, for the higher Reynolds 
numbers runs with 1283 and in particular 2563 resolution, the spectra nearly coincide 
starting from wavenumbers = 20. 

In figure 13(u-c) we study local isotropy for the 2563 run in more detail. One- 
dimensional spectra of the three components of velocity are plotted in figure 13(a ,b ,c) 
for measurements along the (x , y , z)-directions, respectively. All energy spectra are 
scaled by k 5 / 3 / & 2 / 3 .  The dotted curves in the figures are transverse spectra calculated 
from the corresponding longitudinal ones according to (2.1 1). These results show that 
local isotropy is established at wavenumbers starting from k = 10-20. 

There are substantial differences between one-dimensional spectra measured along 
and across Kolmogorov flow. Spectra measured along the mean flow (y-direction) 
follow closely the Kolmogorov law, while transverse spectra in the x- and z-directions 
deviate substantially from Kolmogorov’s law. In fact, the scaling law of the E-:,EZ, 
spectra of the v,,, u,-components of velocity measured in the x-direction and the Ey”y 
spectra of vy measured in the z-direction are quite close to l / k 2 .  This l /k2  law may 
indicate formation of strong vortex sheets or high gradients of velocity. 

Kolmogorov flow is a shear flow which may be characterized by its mean shear 
(SYx} and mean dissipation rate 8‘. As was suggested by Lumley (1967) (see also 

The spectra are scaled by k 5 / 3 / 8 2 / 3 .  
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FIGURE 14. One-dimensional energy spectra scaled by k5 I3 /z2 i3  as a function of log,,k. The 
hyperviscous run with resolution 2563 is used. The dotted lines are transverse energy spectra 
calculated from longitudinal ones according to (2.11) and scaled by k5/’/zZ/’. The spectra (a), (c) 
are measured in low-strain regions, and the spectra (b), ( d )  are measured in high-strain regions. (a), 
(b) EL, E& E: ; (4 (4 E 2 ,  E$ E:. 

Yakhot 1994 and Saddoughi & Veeravalli 1994) the dimensionless parameter that 
characterizes the relative importance of shear is (S) / ( z l i 3 k 2 i 3 ) .  Therefore, mean shear 
should be unimportant for wavenumbers satisfying 

whcre C, is some numerical constant. It follows from the experimental data obtained 
by Saddoughi & Veeravalli (1994) that the constant here is C, = 10. Thus, the 
wavenumber of the onset of local isotropy k, should depend only on the local mean 
shear (S). 

We can test these ideas in Kolmogorov flow where the mcan shear varies from zero 
to one. It is natural then to suggest that anisotropy will be maximal at x-locations 
where the mean shear is maximal and local isotropy will be maximal at x-locations 
where the mean shear equals zero. In figures 12 and 13 we show one-dimensional en- 
ergy spectra averaged over the x-direction only. In figure 14 we plot one-dimensional 
energy spectra measured in the y ( E:, E L ,  E A )  and the z (E$, E&, E z )  directions, but 
here the measurements are carried out first at points where ( S )  = 0 and then at points 
where I (S) I is maximal. As may be seen from these results, local isotropy is a good 
approximation to these spectra starting from approximately the same wavenumber 
k, NN 15 independently of whether the regions have high or low shear. Thus, the onset 
of local isotropy seems to be a global property of turbulence at least for such large- 
scale intermittent open systems as Kolmogorov flow. The reason for this violation of 
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(4.1) may be that although the mean strain is zero in some regions of the flow the 
fluctuating part of the strain is not negligible compared to that of the mean strain. If 
we estimate C, using the absolute value of the mean shear averaged over x we would 
conclude that C, FZ 9 in reasonable agreement with Saddoughi & Veeravalli (1994). 

There is an interesting feature of the observed large-scale anisotropy of Kolmogorov 
flow. If we disregard anisotropy, we may simply obtain the ‘isotropic’ longitudinal 
spectrum by averaging the three individual longitudinal spectra and similarly obtain 
the ‘isotropic’ transverse spectrum by averaging the six individual transverse spectra. 
Then we may calculate the transverse spectrum ENni from the longitudinal one using 
(2.11) and compare it with the measured spectrum. We may also calculate the isotropic 
energy spectrum using (2.12) and compare it with the directly measured isotropic en- 
ergy spectrum. The results of these calculations are shown in figure 15. As may be seen 
these ‘isotropic’ spectra satisfy local isotropy starting from nearly the lowest wavenum- 
ber: an increase of fluctuations of the y -  and z-components of velocity is approxi- 
mately compensated by a corresponding decrease of fluctuations of the x-component 
of velocity. We have not performed a systematic study of the energy spectra anisotropy 
in three-dimensional wavenumber space. But we think that this cancellation of 
anisotropic contributions to the energy spectra might be an indication that energy 
spectra are sums of isotropic and anisotropic contributions. The anisotropic contribu- 
tions, which decay faster than isotropic ones, cancel out when summed over different 
components of velocity. Thus pressure can play a major role in restoring local isotropy 
by redistributing energy between different components of the velocity (see $3.4). 
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FIGURE 16. Log,, - log,, plots of one-dimensional transverse energy spectra WZ [ D , ,  ~ ~ , ] / i ? ” ~  (solid 
lines), one-dimensional cross-spcctra %“ [uX, v x ] / 8 / 3  (dotted lines), one-dimensional velocity pres- 
sure-gradient cross-spectra @ [u!, 1?,p]/(l000&) (dashed lines). The spectra are measured in thc 
z-direction and are plotted for three numerical resolutions: 643, 12X3 and 2563. 

4.2. Algebraic decay of anisotropic spectra 

At high Reynolds numbers, we have demonstrated that local isotropy holds at 
sufficiently large wavenumbers, but the establishment of local isotropy occurs rather 
slowly with increasing k .  As argued by Nelkin & Nakano (1983), anisotropy should 
decay slower than l/k2;’. 

Following Saddoughi & Veeravalli ( 1994) we measure the cross-spectrum between 
the 0,- and 0,-components of velocity density V [vY, u,] defined in (2.13) for a = Y ,  2. 
Another correlation that characterizes anisotropy is the correlation between velocity 
and pressure gradient V[vl?i?L,p] for a = Y , Z .  Both of these correlation functions 
should equal zero in isotropic flows. As was shown in 393.1 and 3.4 both (v,v,) and 
(v,d,p) are not equal to zero and are functions of x. Averaged in the x-direction 
the correlation (z’,vy) equals zero while the correlation (vj,d,p) is non-zero even when 
averaged over x. 

We first check that, when measured at a given space point x in the directions 
GI = Y , Z  the correlation %‘[v,,u,](k,) behaves as ( S ( x ) ) f ( k , ) .  Thus it changes sign 
when (S(x) )  changes sign. We perform our measurements at locations x where 
the stress is maximal in absolute value. To increase our statistical database we 
measure the spectral density of V‘[q,, a,p](kl*)  with an additional averaging over the 
x-direction. The log,, - log,, plots of these spectral correlations along with one- 
dimensional energy spectra are shown in figure 16 (where all spectra arc scaled by 
an appropriate power of € and the spectra of (eE[zij, dyp](ka)  are artificially rescaled 
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FIGURE 17. One-dimensional cross-spectra ~a[ux,24]/(81'3 ( S ) )  scaled by k7 /3  as a function of 
log,, k/kd for numerical resolutions 64', 12tI3 and 256'. Measurements are performed in high-shear 
regions. (a) Spectra in the CI = Y direction; ( h )  spectra in the a = 2 direction. 

by a factor of 1000). It is interesting that the cross-spectral correlations are non-zero 
and scale algebraically even at those wavenumbers where we observe local isotropy 
on the level of one-dimensional energy spectra. 

It is expected from Lumley (1967), Yakhot (1994), Grossman et al. (1994) that the 
shear-stress co-spectrum should scale linearly with (S) as 

In figure 17(u,b) we scale V[vx7vy](k) by k7/3/(,?1/3 (S)). It may be seen that our 
data agree reasonably well with (4.2). The one-dimensional co-spectra measured in 
the y-direction show better scaling than co-spectra measured in the z-direction. The 
constant CO = 0.2 - 0.4. In figure 18(a , b )  we also plot the correlation, coefficient 
spectrum defined in (2.14); it algebraically decreases from 0.6 to zero and even 
negative values. 

In figure 19(u-c) we plot velocity-pressure-gradient co-spectra WE [uY, dyp](k,) mea- 
sured in the tl = (X, Y ,  2)-directions. These co-spectra are scaled by k2/6 and thus 
have the form 

8kf 
Vaby, dypl(k) = 0 . 2 F  (4.3) 

where kf = 1 is the scale of the force. Naively we would expect Kolmogorov-like 
scaling for this correlator as $ / k .  Thus the anisotropy decays in this case as l/k, even 
faster than 1/k2/3. 
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FIGURE 18. One-dimensional correlation-coefficient spectra R:y as a function of log,, k for numerical 
resolutions 643, I B 3  and 2563. (a) Spectra in the CI = Y direction; ( h )  spectra in the CI = 2 
direction. 

Therefore anisotropy in co-spectra decays algebraically and relatively slowly in ac- 
cordance with the predictions of Nelkin & Nakano (1983). We think that such a slow 
decay may have significant dynamical consequences for Navier-Stokes turbulence. 

There are also spectra that are rather insensitive to large-scale anisotropy. An 
example is the spectrum of the energy dissipation rate correlation function. The 
energy dissipation rate is defined according to (2.4). The scaling of the spectrum of 
energy dissipation rate %"[&, 61 - l /k ' -p  defines the so-called intermittency exponent 
p. According to the recent work of Sreenivasan & Kailasnath (1993), ,u k: 0.25 f 0.05. 
We have checked that the spectrum of energy dissipation rate is locally isotropic and 
has the form 

(4.4) 

with p w 0.22 (see figure 20). This scaling is consistent both with Sreenivasan & 
Kailasnath (1993) and with the results of Borue & Orszag (1995~). 

z2 
q x [ 8 , 4 ( k )  0 . 1 5 g q p  

f 

4.3. Anisotropy of vorticity skewness 
One of the important dynamical consequences of the slow decay of anisotropy may 
be the persistent small-scale anisotropy of higher-order moments. It was recently 
noticed by h m i r  & Shraiman (1995) that in homogeneous shear flows the skewness 
of the z-cornponcnt of vorticity uz, 

Y;" = p 3 ( ~ ) / 0 ~ ( ~ ) ,  (4.5) 
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FIGURE 19. One-dimensional velocity-pressure-gradient cross-spectra WE [o,, a,p]/2 scaled by k2  as 
a function of log,,(k/kd) for numerical resolutions 643, 12S3 and 2563. Spectra are averaged over 
the flow in x-direction. (a )  Spectra in the a = X direction; ( h )  spectra in the CI = Y direction; (c) 
spectra in the a =  Z direction. 

is independent of Reynolds number and y;" m -0.53. Here p,((oZ) is the nth order 
central moment and cr(wz) is the variance of oz. In the case considered by Pumir & 
Shraiman (1995) w, was the only component of vorticity with non-zero negative mean 
that was constant in space. That is, the small-scale vorticity was more skewed in the 
direction of the mean large-scale vorticity. Obviously, for locally isotropic turbulence, 
vorticity skewness should vanish. 

It is interesting to check this remarkable result for Kolmogorov flow, i.e. for 
inhomogeneous shear flow. In the case of Kolmogorov flow, w, is also the only 
vorticity component with non-zero mean. To perform this calculation we use low- 
pass spatial isotropic filters tpt of scale / defined for any quantity A ( x )  as 

and normalized j" qt(x)d3x = 1. In Fourier space cpe(k) = exp(-t8) with i" = Plkl. We 
check that the results are insensitive to the form of filter used. We measure the joint 
probability distribution P ( D P x , @ ) ,  where D,, = &uf) with t = 1/2 is shear filtered 
at large scales and wit) is the small-scale vorticity, filtered at inertial range scales with 
/ = 1/8,1/16,1/32 (see (4.6)). The conditional vorticity skewness y y ( D y x )  is defined 
using (4.5) but the moments of wit) are conditioned on the large-scale shear ijvx. The 
results for y r ( E y x )  are plotted in figure 21 for 643 and 12S3 resolution. As can be seen, 
the functions y y ( E y x )  are nearly independent of f and Reynolds number and depend 
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FIGURE 20. One-dimensional energy dissipation rate spectra V [6,6]/2* as a function of loglo(k/kc,) 
for numerical resolutions 643, 12g3 and 2563. (a) Spectra scaled by k:'; (h )  log,, of spectra multiplicd 
by k i  with y = 0.78. Spectra are averaged over the flow and in all three c i  = X; Y , Z  directions. 

linearly on the large-scale shear v",,. In regions of large Iijyrl, the vorticity skewness 
lyyl = 0.5 with the sign of skewness determined by the direction of the large-scale 
vorticity. These results are consistent with the case of homogeneous shear considered 
by h m i r  & Shraiman (1995). 

Thus, violations of local isotropy for higher-order moments may coexist with 
locally isotropic second-order moments. The non-zero value of vorticity skewness 
reflects the large-scale anisotropy and its probably non-universal value varies in space 
synchronously with the isotropy-breaking large-scale shear. This is a direct indication 
that the statistics of higher-order moments may be non-universal and sensitive to 
a large-scale structure of a flow. We think that anisotropic structures (such as 
vortex sheets or tubes) may play an important role in violations of local isotropy. 
These structures have large scale size in some directions and small scale size in other 
directions. It may be natural to expect that these structures are oriented by large-scale 
anisotropy thus leading to small-scale anisotropy. 

5 .  Discussion 
One result is the demonstration of the advantages of using hyperviscosity to 

simulate high Reynolds number turbulence. In itself, replacing Newtonian dissipation 
by hyperviscous dissipation is a serious test of Kolmogorov's universality ideas. In 
fact, as we found earlier (Borue & Orszag 1995a,b), we again have an indication 
that three-dimensional inertial-range dynamics may be relatively independent of the 
particular mechanism of small-scale dissipation. In addition, as in our early work, 
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FIGURE 21. Conditional vorticity skewness $(5,,) for filtered vorticity component wl') as a function 
of large-scale shear C Y x .  (a) Numerical resolution is 128' and filter sizes arc C = 1/8,1/14,1/32. (b)  
Numerical resolution is 64' and filtcr sizes are C = 1/8,1/16. 

there is also indication that the low-order statistics of energy dissipation fluctuations 
is independent of the form of energy dissipation. In contrast, our results have shown 
that the dynamics is strongly influenced by the mechanism of forcing. 

In forced homogeneous turbulence, we have observed (Borue & Orszag 19950) a 
deviation from the Kolmogorov 5/3 law, namely E ( k )  - l / k '  8 5 .  On the other hand, 
for freely decaying homogeneous turbulence, the 5/3 law seems to hold. We have 
found here that Kolmogorov flow is anisotropic at  large scales with strong deviations 
of some transverse velocity correlation functions from the Kolmogorov 5/3 law. This 
may shed light on our earlier results for hyperviscous homogeneous turbulence, as 
white-in-time large-scale forcing will set up large-scale anisotropy, as in Kolmogorov 
flow, for a few large-eddy turnover times. After long time though, statistical isotropy 
of the flow will be fully recovered by the isotropic white-noise forcing: orientations of 
the large-scale anisotropic flow will slowly change in time. The fact that for several 
large-eddy turnover times there is large-scale anisotropy reveals itself in deviations 
from the Kolmogorov law. The observed l /kz  scaling of some components of the 
energy spectrum in Kolmogorov flow is smeared out and perhaps contaminates the 
isotropic energy spectrum leading to the E ( k )  - l / k '  R5 result. However, it is possible 
that the observed anomalous scaling is a true high Reynolds number effect. 

Most measurements of energy spectra in the laboratory are done using Taylor's 
hypothesis in conjunction with measurements of correlation functions along the mean 
flow. Often mean flows have quite noticeable shear with y~ m 2 - 6 .  Here, we have 
shown that properties of correlation functions along and across the flow are quite 
different. In fact, energy spectra measured along the flow demonstrate a clear tendency 
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towards Kolmogorov scaling in contrast to correlation functions measured across the 
flow. In only a few laboratory experiments has local isotropy even been checked along 
the flow and we are not aware of any verification of the local-isotropy hypothesis 
involving measurements of correlation functions across the flow. 

We have also shown that even for large-scale anisotropic flow, local isotropy is 
recovered with increasing Reynolds number but with an algebraically slow decay 
of anisotropic corrections. This slow decay of anisotropy may lead to anisotropy 
of higher-order moments even when local isotropy is recovered for sccond-order 
moments. Thus our results confirm the local-isotropy hypothesis at least for low-order 
moments. It is worthwhile mentioning that although the local-isotropy hypothesis 
also holds within the hyperviscous dissipation range, properties of this dissipation 
range should depend on the form of hyperviscosity. The lower wavenumber limit 
of locally isotropic behaviour in Kolmogorov flow seems to be a global property of 
the flow and not a function of only the local mean shear rate as in Saddoughi & 
Veeravalli (1994). Although the criteria (4.1) for onset of local isotropy still can be 
used, (S) should be replaced by the r.m.s. value of large-scale strain. This global 
character of the onset of local isotropy is likely due to the intermittent behaviour of 
Kolmogorov flow even at large scales. 

Another conclusion is that Kolmogorov flow may be an ideal environment for 
testing of turbulence transport models. There are no walls in this flow, eliminating 
complications connected with boundary layers. The level of turbulence intensity is 
high. However, the large-scale intermittency of Kolmogorov flow makes this flow 
difficult to model and perhaps similar to open flows like jets and wakes. On the other 
hand, the simple structure of its mean flow characteristics may make Kolmogorov 
flow simple enough to attempt analytic theory. 

We have shown that the standard expression for effective viscosity used in turbu- 
lence transport approximations should be modified to account for the time-dependent 
character of the flow. Indeed C, becomes a nearly linearly decreasing function of the 
dimensionless shear q. These results are consistent with the theoretical predictions 
of Smith & Yakhot (1993). Further work is needed to systematically study various 
approximations used in turbulence transport models. 

We are grateful to V. Yakhot, K. Sreenivasan and I. Staroselsky for valuable 
discussions and to B. Shraiman for providing his work prior to publication. The 
computations have been performed on the Intel Delta at Caltech and on the IBM 
PVS at Princeton. This work was supported by ARPA and ONR under Contracts 
NOOO14-92-5-1796 and N00014-93-C-0216. 
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